Annales Mathematiques Africaines


Aller au contenu

abstract_art5

Contenu

The quasi-spherical transformations



Cornelie MITCHA MALANDA
Université Marien NGOUABI BP : 69, Brazzaville, Congo


Kinvi KANGNI
Université Félix Houphouët Boigny,
22 BP 582 Abidjan 22 Abidjan, Côte d'Ivoire



Mathematics Subject Classification: (MSC 2010) 22E25, 22E27, 22E60
Key words : Quasi-Gelfand pair, quasi-spherical function 

Abstract:


Let G be a locally compact group, K a compact subgroup of G. (G, K ) is a Gelfand pair if the convolution subalgebra L1(G ) of L1(G ) that are biinvariant under the action K, is commutative.

Let LK1(G) be the algebra of K-invariant L1-functions on G. L1(G) is isomorphic to LK1(G), then L1(G) is nilpotent is equivalent to the fact that LK1(G) is nilpotent.

Let Hn be the (2n + 1)-dimensional Heisenberg group. The action of the compact subgroup SO(n,ℝ) of the group of automorphisms Aut(Hn ) of Hn, is not of multiplicity free [1] then LSO(n,ℝ)1(Hn ) is not commutative and the couple (Hn,SO(n, ) is not a Gelfand pair.

In this work, we will interest in this case where the associated algebra is nilpotent but not commutative and we will construct and study the corresponding spherical transformation which will be called a quasi-spherical transformation.

Accueil | Comité de Rédaction | A propos du journal | Abonnement | Contenu | Plan du site


Revenir au contenu | Revenir au menu