Annales Mathematiques Africaines


Aller au contenu

Article33

Contenu > Anciens Numéros > Volume_4

On Hilbert quasi-polynomial functions of finitely generated bigraded modules over non standard bigraded rings



Henri DICHI
Université Blaise Pascal, Labo de Maths, Compl. Sci.
Clermont Ferrand II Cézeaux 63177 Aubière France


Daouda SANGARÉ
Labo de Mathématiques et Informatique Université Nangui Abrogoua,
22 BP 1709 Abidjan 22 Abidjan, Côte d'Ivoire



Mathematics Subject Classification: [2010] : 13A02, 13A15, 13A30, 13B25, 13D40, 13F20, 13F25, 13H15
Keywords : non standard bigraded module, quasi-polynomial function in two variables, Hilbert two variables functions, Poincaré series, multiplicities



Abstract:

In this paper we prove, as main results, that the Hilbert function $H(M,-,-)$ of a finitely generated bigraded module MATH over a non standard bigraded ring MATH is a quasi- polynomial function in two variables if the ring $A_{0,0}$ is artinian and that if this function $H(M,-,-)$ has nonnegative degree $d(M)$, then MATH where $dim_{Kr}\ M$ is the Krull dimension of the module $M$. We show also that, if $A_{0,0}$ is artinian and local, then the cumulative function $H^{\ast }(M,-,-)$ associated with the Hilbert function $H(M,-,-)$ is a quasi- polynomial function whose degree $d^{\ast }(M)$ satisfies the equality
MATH

Accueil | Comité de Rédaction | A propos du journal | Abonnement | Contenu | Plan du site


Revenir au contenu | Revenir au menu