Contents > Past issues > Volume 4
On Hilbert quasi-polynomial functions of finitely generated bigraded modules over non standard bigraded rings
Henri DICHI
Université Blaise Pascal, Labo de Maths, Compl. Sci.
Clermont Ferrand II Cézeaux 63177 Aubière France
Daouda SANGARÉ
Labo de Mathématiques et Informatique, Université Nangui Abrogoua,
22 BP 1709 Abidjan 22 Abidjan, Côte d'Ivoire
Mathematics Subject Classification: [2010] : 13A02, 13A15, 13A30, 13B25, 13D40,
13F20, 13F25, 13H15
Keywords : non standard bigraded module,
quasi-polynomial function in two variables, Hilbert two variables functions,
Poincaré series, multiplicities
Abstract:
In this paper we prove, as main
results, that the Hilbert function
of a finitely generated bigraded module
over a non standard bigraded ring
is a quasi- polynomial function in two variables if the ring
is artinian and that if this
function
has
nonnegative degree
,
then
where
is the Krull dimension of the module
.
We show also that, if
is artinian and local, then the cumulative function
associated with the Hilbert function
is a quasi- polynomial function whose degree
satisfies
the equality